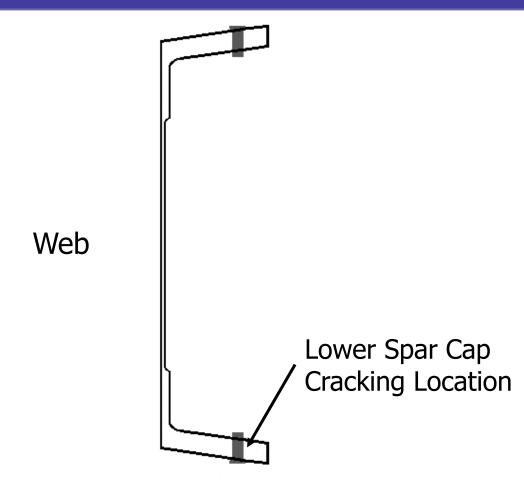


Introduction to Probabilistic Methods with Applications to Probabilistic Damage Tolerance Analysis

Harry Millwater - University of Texas at San Antonio,
Juan Ocampo, St. Mary's University,
Nathan Crosby, AeroMatter Inc.

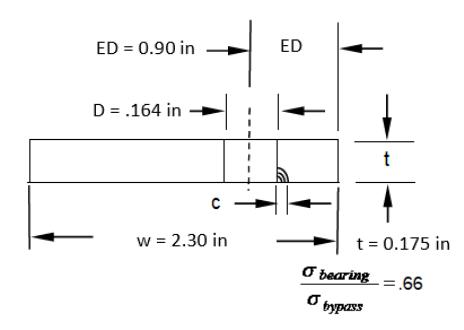
Beth Gamble, Chris Hurst, Textron Aviation (Cessna)
Mary Nuss, Nuss Sustainment Solutions



General Aviation Corporate Jet With Wing Forward Spar Cap Cracking

Problem Overview

Wing Forward Spar

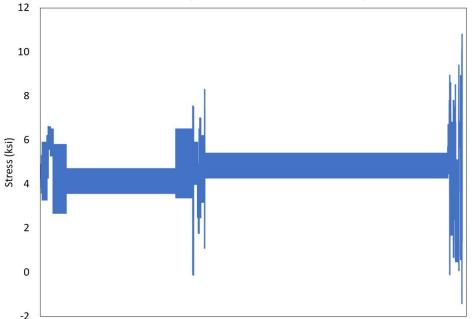


Simplified Geometry

Idealized Geometry

CLASSICAL CRACK GROWTH

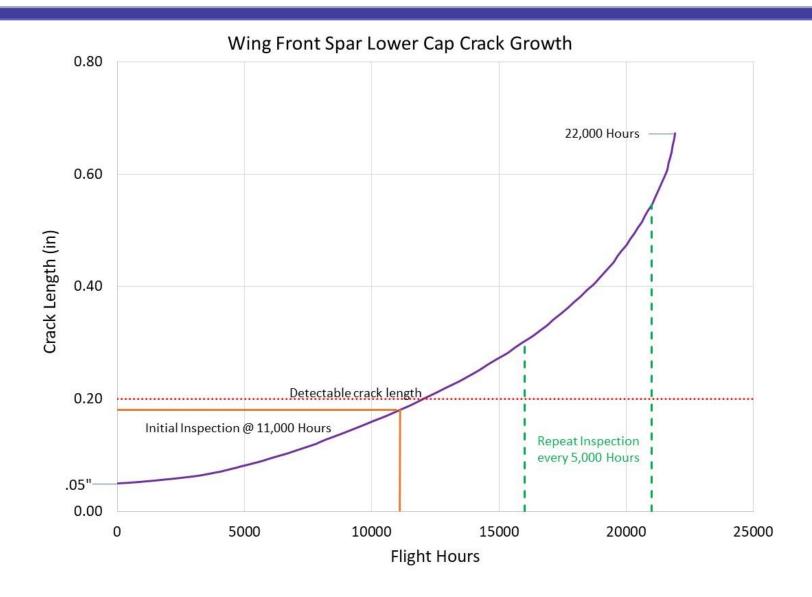
Classical Crack Growth


- -Determine initial and recurring inspections using classical crack growth analysis from .05" flaw
 - -AFGROW software used for crack growth
 - -User defined spectrum
 - -Detectable crack length = .20 in.
 - -Inspections
 - -Initial inspection = $\frac{\text{Life}}{2}$
 - -Repeat inspection = $\frac{\overline{\text{Life}} \text{Life@detectable}}{2}$

User Stress Spectrum

- -User defined spectra
 - Gust cycles are based on PSD continuous gust criteria in 14 CFR 25 Appendix G
 - Maneuver cycles are based on NASA measured data for business jets
 - Spectra is in AFGROW format (1,000 flight hours, 1 flight = 1.65 Flt. Hrs.)
 - Used SMART to create a simplified GAG spectrum with equivalent damage

50 different max-min stress pairs, 33,600 total pairs



<u>Variable</u>	<u>Parameter</u>	
Initial Crack Size	0.05 in	
Fracture Toughness	37.0 ksi√in	
Paris m	2.586	
Paris c	1.29E-8	AFGROW INPUT
Walker exponent	.82	Mean only
Ultimate Stress	69.0 ksi	
Yield Stress	58.0 ksi	
Hole Offset	0.90 in	

Classical Crack Growth

MASTER CURVE WITH AFGROW

- -Master curve used for probabilistic analysis
 - Requires crack growth curve from crack growth software using mean spectra
 - AFGROW used to generate master crack growth curve
 - Probabilistic variables are initial crack size and fracture toughness
 - User inputs crack growth curve & residual strength information as userfile.avsn file to SMART

- Example file provided: Capstone_mastercurve.smdt

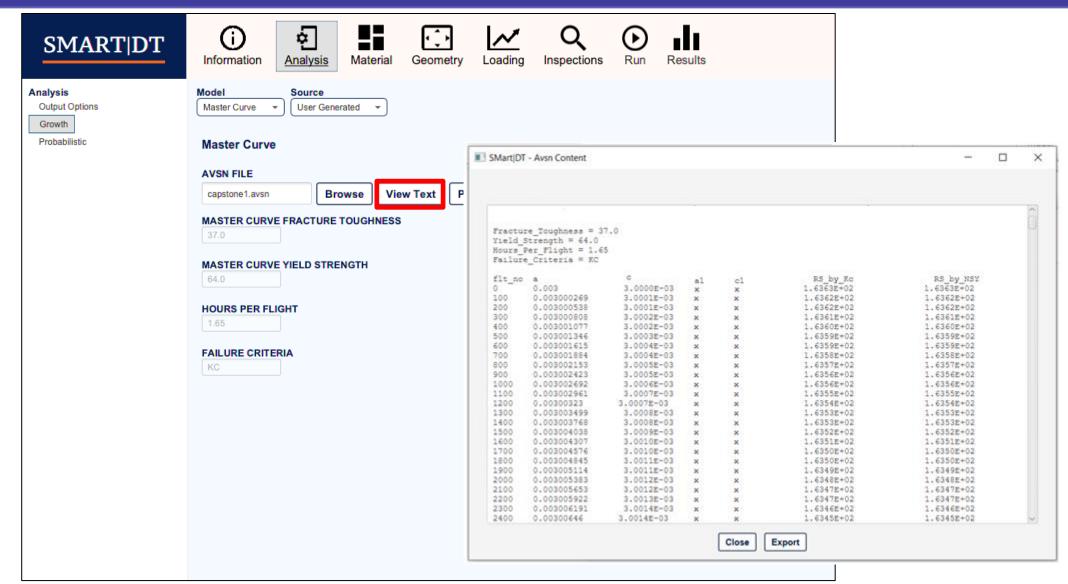
Analysis Location Properties

	Random Variable	<u>Distribution</u>	<u>Parameters</u>	
	Initial Crack Size	Lognormal	Mean = 0.009055 in Standard Deviation =0.001252 in	SMART INPUT
	Fracture Toughness	Normal	Mean = 37.0 ksivin Standard Deviation = 3.8 ksivin	Mean & StdDev
	Paris m	Binormal	Mean = 2.586 Standard Deviation = 0.0	
	Paris c (log)	Binormal	Mean = -7.888 Standard Deviation = 0.0	AFGROW INPUT
C	Coefficient of Variance		0.0	Mean only
	Walker exponent		.82	
	Ultimate Stress	Normal	Mean = 69.0 ksi Standard Deviation = 0.0 ksi	
	Yield Stress	Normal	Mean = 58.0 ksi Standard Deviation = 0.0 ksi	
	Hole Offset	Normal	Mean = 0.9000 in Standard Deviation = 0.0 in	

SMART|DT - Project Information

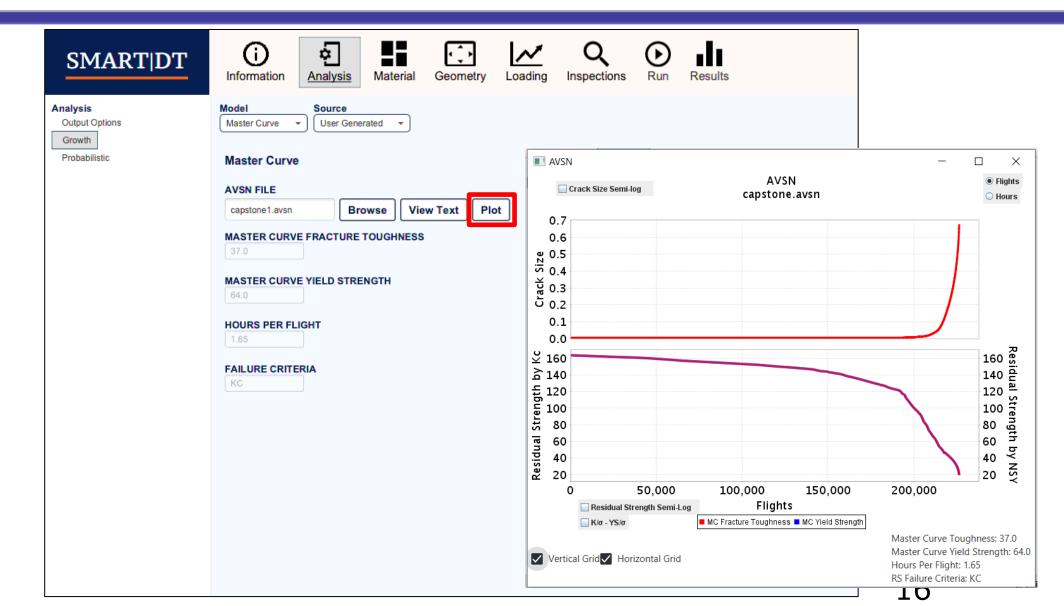
SMART DT	Information Analysis Material	Geometry Loading	Inspections R	un Results
Information				
(i) Website				
		Information about		
	Project Summary	Ð	Aircraft Information	n 🛧
	NAME (REQUIRED)	1	MAKE (OPTIONAL)	
	Capstone		Acme	
	DESCRIPTION	1	MODEL (OPTIONAL)	
	Front Spar Analysis		Sky Runner	
		\$	SERIAL NUMBER (OP	TIONAL)
			All	
			TYPE CERTIFICATE DA	ATA SHEET - TCDS
			TCDSSR1	
	This program was developed under sponsorship from (UTSA) and partners St. Mary's University, Textron Av (PI - UTSA), Juan Ocampo (StMU), Beth Gamble (TA) Ocampo (UTSA MS student), Sohrob Mattighi (Progra	viation, Nuss Sustainment Solution), Chris Hurst (TA), Marv Nuss (NS	ns, and Fieldstone Software SS), JR Lawhorne (Fieldsto	e. The responsible personnel are: Harry Millwater

SMART|DT – Analysis Information (Output Options)



SMART DT	Information Analysis Material Geometry Loading Inspections Run Results
Analysis Output Options Growth Probabilistic	Probability of Failure (POF) Flights Maximum Flights Calculation Flight Units 50 Maximum Flights Calculation Flights Value

SMART|DT - Analysis Information (Growth)



SMART|DT – Analysis Information (Growth)

SMART|DT – Analysis Information (Probabilistic)

SMART DT	Information Analysis	Material Geometry	Loading Inspection	ns Run	Results
Analysis Output Options Growth Probabilistic	Information Method Adaptive Importance Sampling Monte Carlo Adaptive Importance Sampling 0.1 Samples Per Iteration 100 Maximum Iterations 100	Material Geometry Random Seed 2394	Loading Inspection	ns Run	Results

SMART|DT – Material Information

SMART DT	Information Analysis M	aterial Geometry Loading Ins	Q Pepections Run Results
	Category Group Custom 2014 Series Aluminum 2024 Series Steel 2124 Series Titanium 7050 Series 7075 Series 7175 Series 7475 Series 7475 Series	Treatment Form, Orie 7475-T7351 Plate L 7475-T7651 Plate TL VIELD STEEPINGTH	Length: Inches Stress: KSI Category: Aluminum Group: 7475 Series Treatment: 7475-T7351 Form, Orientation: Plate TL
	FRACTURE TOUGHNESS T = 1.3-4.0 DISTRIBUTION Normal	VIELD STRENGTH DISTRIBUTION Deterministic	DISTRIBUTION Deterministic
	MEAN STDEV 37.0 3.8	VALUE 57.0	VALUE 70.0
	PARIS CONSTANT Log(C) DISTRIBUTION Deterministic VALUE 0.0	PARIS EXPONENT DISTRIBUTION Deterministic VALUE 0.0	

SMART|DT – Geometry Information

SMART DT	Information Analysis Material Geometry Loading Inspections Run Results
	Equivalent Initial Flaw Size (EIFS) Category Group Data Set Summary Custom Commercial Transport Military Fighter Military Transport
	Initial Crack Size Distribution DISTRIBUTION LogNormal MEAN STDEV 0.009055 0.001252 Aspect Ratio DISTRIBUTION Deterministic VALUE 1.0
	The EIFS is traditionally determined through the process of growing in-service or tear-down cracks backwards to time zero. As such, the results are dependent upon the aircraft location, assumed material parameters, and loading history. As a result, it is not recommended to use an EIFS distribution for a different application than for which it was derived. The EIFS values are provided here as a guide and care should be taken to select the distribution that best matches the aircraft mission, joint geometry and manufacturing methods, or ensure that the distribution is appropriately conservative.

SMART|DT – Loading Information

SMART DT	Information Analysis Material Geometry Loading Inspections Run Results
	Extreme Value Distribution (EVD) Method
	Ultimate Load
	Limit / Ultimate Load
	19.5

Analysis Inspection Parameters

Inspection Parameter

Number of Inspection Types

Inspection Type

Inspection Schedule

Probability of Inspection

Probability of Detection

Detectable Crack Size

Repair Crack POD

Repair Crack Size

Value

One—Single Repair

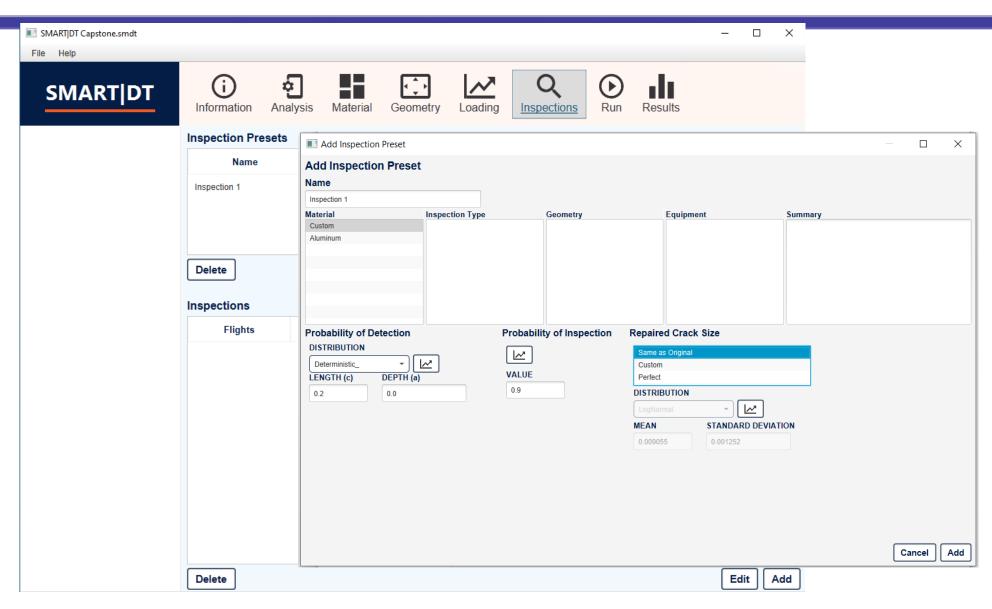
Sliding Probe – Eddy Current

17,300 Flights (28,500 Hr) Initial 650 Flights (1,100 Hr) Repeat

90%

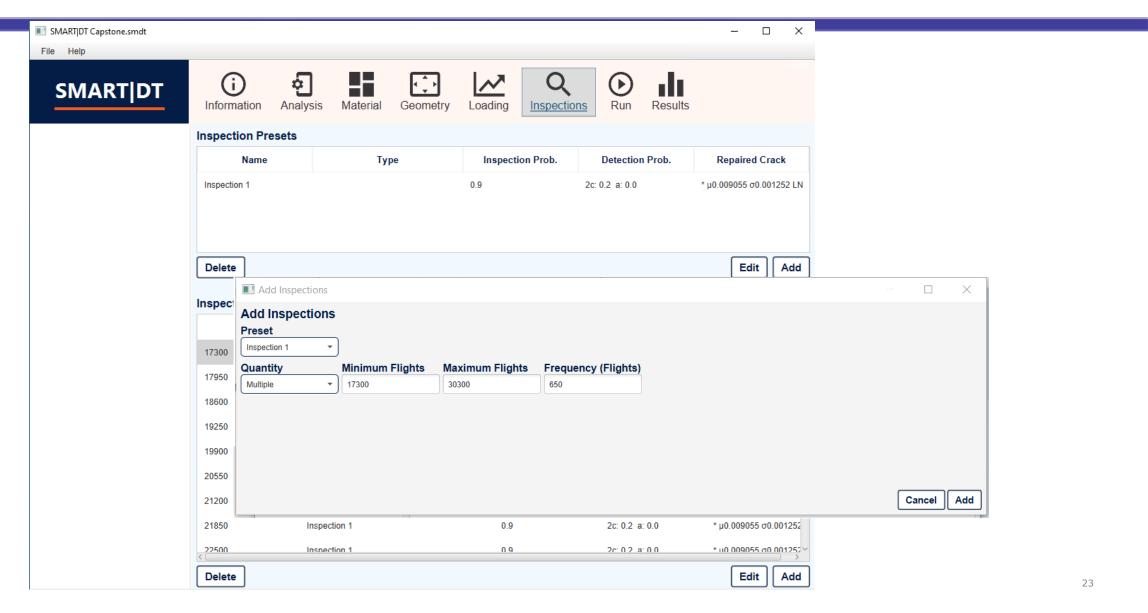
Deterministic

.20 inch


.20 inch

Mean = 0.009055 in Standard Deviation = 0.001252 in

SMART|DT – Inspection Information

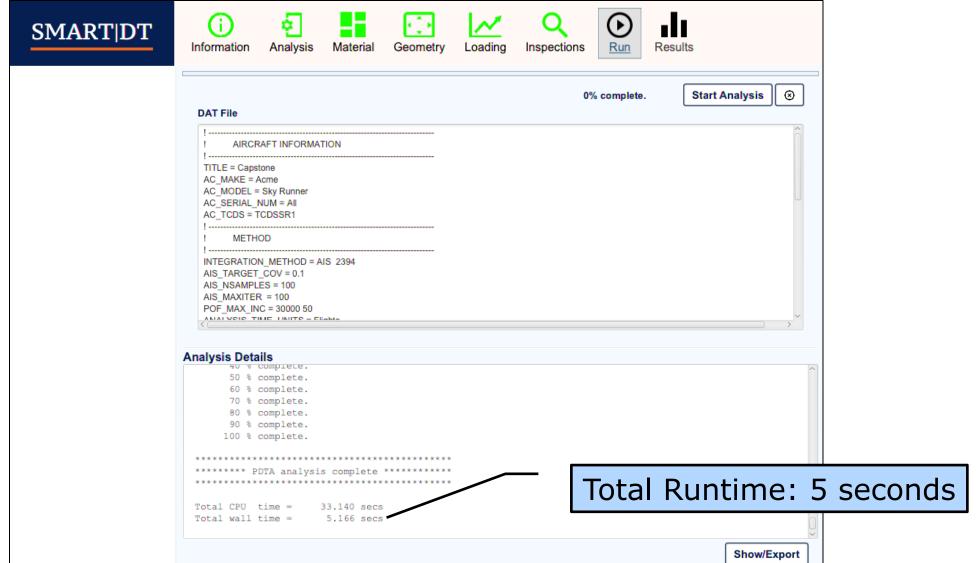


SMART|DT – Inspection Information

DAT File

Ready to Start

Start Analysis


⊗

! AIRCRAFT INFORMATION	
FITLE = Capstone	
C_MAKE = Acme	
C_MODEL = Sky Runner	
C_SERIAL_NUM = All	
C_TCDS = TCDSSR1	
METHOD	
ITEGRATION_METHOD = AIS 2394	
S_TARGET_COV = 0.1	
S_NSAMPLES = 100	
S_MAXITER = 100	
OF_MAX_INC = 30000 50	
MALVOIC TIME LIMITE = Eliable	\rightarrow
vsis Details	
ysis Details	
vsis Details	
ysis Details	Show/Expor

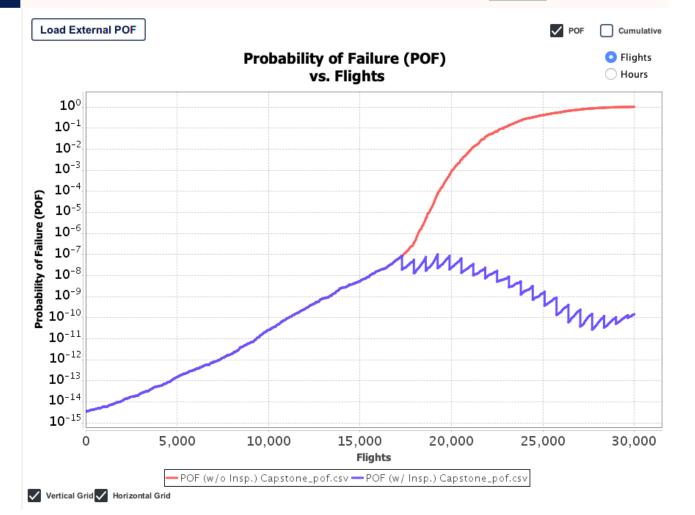
SMart DT - OUT content			-		
					^
	FRACTURE MECHANICS				
					[
Crack growth code:	MASTERC_USER				Ш
Master Curve file:	capstonel.avsn				
Master Curve Fracture Toughness	37.0000				
Master Curve Yield Strength	64.0000				
Hours Per Flight	1.6500				
Failure criterion:	KC				
Initial crack size distribution:	LOGNORMAL				
Initial crack size mean (X):	0.0091				
Initial crack size standard deviation (X):	0.0013				
Fracture toughness distribution:	NORMAL				
Fracture toughness mean:	37.0000				
Fracture toughness standard deviation:	3.8000				
	LOADING AND EVD PARAMETERS				
EVD PARAMETERS					
EVD value distribution:	LIMIT				
EVD location:	19.5000				
A deterministic limit load is used with value:					
USAGE PARAMETERS					
Number of Usages:	0				
Number of Usages:	0				
Number of Usages:					
Number of Usages:	0 INSPECTIONS				
Number of Usages: Inspections: Time [Type]:					
Number of Usages: Inspections: Time [Type]:		8600 [1]	19250 [1]	1990	0 0
	INSPECTIONS	8600 [1]	19250 [1]	1990	0 ~
Inspections: Time [Type]:	INSPECTIONS	8600 [1]	19250 [1]	1990	0 ~

Master Curve .out File

			SUMMARY	OF OUTPUT DAT	A	
POF result	s in CSV format	were written to	Capst	one_pof.csv	=========	
	RESULTS WITE	HOUT INSPECTIONS	RESULTS WITH	INSPECTIONS		
Flight Number	POF	Cumulative	POF	Cumulative		
0	0.000E+000	0.000E+000	0.000E+000	0.000E+000		
50	0.000E+000	0.000E+000	0.000E+000	0.000E+000		
100	0.000E+000	0.000E+000	0.000E+000	0.000E+000		
150	0.000E+000	0.000E+000	0.000E+000	0.000E+000		
200	0.000E+000	0.000E+000	0.000E+000	0.000E+000		
250	0.000E+000	0.000E+000	0.000E+000	0.000E+000		
300	0.000E+000	0.000E+000	0.000E+000	0.000E+000		
29350	9.608E-001	1.000E+000	1.360E-007	1.539E-003		
29400 29450	9.629E-001 9.649E-001	1.000E+000 1.000E+000	1.360E-007 1.360E-007	1.546E-003 1.553E-003		
29450	9.649E-001 9.668E-001	1.000E+000	1.360E-007	1.560E-003		
29550	9.686E-001	1.000E+000	1.360E-007	1.567E-003		
29600	9.703E-001	1.000E+000	1.360E-007	1.573E-003		
29650	9.720E-001	1.000E+000	1.360E-007	1.580E-003		
29650	9.720E-001	1.000E+000	1.360E-007	1.580E-003	<insp< td=""><td></td></insp<>	
29700	9.735E-001	1.000E+000	1.360E-007	1.587E-003		
29750	9.750E-001	1.000E+000	1.360E-007	1.594E-003		
29800	9.764E-001	1.000E+000	1.364E-007	1.601E-003		

Master Curve .out File

		SUMMARY OF THE EF	FECTS OF INSPECTIONS ON THE PO	F
		RESULTS WITH INSP	ECTIONS	
FLT NUM	POF	CTPOF	Pct_Cracks_Detected	
17300 17300	8.400E-008 1.830E-008	6.899E-005 6.899E-005	13.61	
17950 17950	4.880E-008 1.739E-008	8.812E-005 8.812E-005	8.79	
18600 18600	6.849E-008 3.550E-008	1.102E-004 1.102E-004	9.59	
19250 19250	1.154E-007 7.858E-008	1.502E-004 1.502E-004	10.56	
19900 19900	1.525E-007 1.234E-007	2.182E-004 2.182E-004	11.10	
20550 20550	1.592E-007 1.373E-007	3.074E-004 3.074E-004	11.01	
21200 21200	1.542E-007 1.441E-007	4.013E-004 4.013E-004	10.20	
21850 21850	1.611E-007 1.439E-007	5.001E-004 5.001E-004	8.67	



Results

i Probabiliy of Failure

Initial Flaw Size Lognormal

 $\mu = .009055$

 $\sigma = .001252$

Fracture Toughness

 $\mu = 37.0$

 $\sigma = 3.8$

Initial Inspection 28,500 Hours Repeat Inspection 1,100 Hours

Questions

