

SMART|LD Overview

SMART Short Course
The Aircraft Airworthiness & Sustainment
Conference

Grapevine, Texas – March 21, 2016

Program Overview

Fatigue

Probabilistic Fatigue Analysis for Small Airplanes (SMART_{LD})

Safe-life Approach

- Prob. Life distribution
- Hazard Rate
- Sensitivity Analysis

Damage Tolerance

Probabilistic Damage Tolerance Analysis for Small Airplane (SMART_{DT})

- SFPOF, Hz, CTPOF
- Inspection/Repair Effect
- Sensitivity Analysis

Probabilistic Fatigue Management Program for General Aviation

- Develop experience and familiarity with probabilistic approaches within engineering personnel that design, manufacture and maintain general aviation aircraft.
- Verification with in-service findings.
- Develop a Probabilisticallybased fatigue management plan (PFMP) for general aviation

Smart|LD Capabilities

Loading Generation

- Computed from exceedance curves (Internal library and user exceedance option) Weighted usage available.
- Flight Duration and Velocity/weight matrices, Design load limit factors, one-g stress, and ground stress as user input.
- User spectra (Afgrow format)

Damage accumulated using Miner's rule

- Safe-Life calculations (in # of flights and # of hours) using Monte Carlo sampling
- Accumulated damage calculation based on the user number of flight hours.
- Probability of failure computed using MC sampling

Multiple random variables

- Library of exceedance curves (weighted mix ok) Option for user input exceedance.
- Flight duration, a/c velocity, one-g stress, and ground stress
- PSN curve constructed from constant amplitude tests Option for user input PSN
- Sink Rate
- Random damage coefficient.
- Stress Severity Factor (SSF) option
- > Text output files showing Monte Carlo results
- Sensitivities computed using correlation and scatter plots
- Life distribution and hazard rate calculation
- Standard Fortran 95/03, Unix and Windows
- GUI

Methodology

SMall Aircraft Risk Technology – Linear Damage Analysis

Risk Methodology

Methodology Summary

Loading Generation

Damage Methodology (Safe Life)

Hours Methodology (Current-Future Risk)

Variables Classification

Variable	Туре		
Gust/Maneuver Load Exceedances	Probabilistic: (Lognormal)		
Aircraft Velocity and Flight Duration	Probabilistic: (Joint PDF with Correlated Variables)		
Maneuver Load Limit Factors	Deterministic		
Gust Load Limit Factors	Deterministic		
Ground/One-g Stress and Flight Duration	Probabilistic: (Joint PDF with Correlated Variables)		
Sink Rate	Probabilistic		
P-S-N	Probabilistic (Determined from regression modeling of constant amplitude tests)		
SSF	PSN Curves (Probabilistic) User Input/ Direct Input (Deterministic)		
Miner's Damage Index	Probabilistic (Weibull or Normal Distribution— fit to variable amplitude tests)		

Stress Life Curves

Risk Methodology

Testing Data

Different Configurations

- ✓ Open Hole
- ✓ Filled Hole
- Load Transfer

Hazard Function Example Application

- •Fleet of 6 Airplanes.
- •Calculate Hazard Next 500 hrs.

No A/C	Hours	Hz(t)*dt	H(t)	
2	22,000	0.002	0.004	
3	30,000	0.01	0.03	
1	45,000	0.0315	0.0315	
Fleet Total Hazard			0.0655	

PSN Region Accumulated Nuss PSN Region Accumulated Damage

GUI

le Documentation					
egin Usage Spectra Launc	h Panel				
Load Spectrum:			Browse	Transfer Factor:	1.0
	Right Hours for this Spectrum	Re	ht House per Flight		
oad Usages:	Usage Spectra				
SEUE	Arcreft Usage SINGLE_ENGINE_UNPRES	S_EXEC_USAGE	. *	Pk	t Exceedances
	Percent of Total Usage:	1.0	☐ Exce	edance COV	12.0
	Design Maneuver Load Factor High:	3.80	One G Stress (psi):	6550	
	Design Gust Load Factor High.	3.41	Average Velocity (Vno/Vino(Kriotz)):	153	
	Design Maneuver Load Factor Low:	-1.52	Number of Flight Times:	13	
	Design Gust Load Factor Low	-1.41	Number of Velocities:	11	
	Ground Stress (psi):	1987	Load Matrices		Matrix
	File:			Browse	Save Usage
	☐ Right Variation				
					Deleted Usages
				-	Decied Usages

Upcoming plans

- Rollout plan
 - Smart|LD 2016 official release
 - Smart|DT multi-phase rollout
 - Phase I: Spring 2016:
 - Master curve implementation, WBI with multiple repair, multi-threaded, Nasgro/Afgrow/Fastran interfaces.
 - Phase II: Late 2016, Early 2017
 - Multiple random variables (dadN, geometry), numerical integration, Kriging surrogate modeling, sensitivities, importance sampling
 - Phase III: Future plans
 - Cloud capabilities, optimized inspection schedule, probabilistic database, etc.
 - Training
 - AA&S 2016
 - Monday morning: LD
 - Monday afternoon: DT
 - Presentation on Efficient Methods for POF Calculations
- Contacts for more information
 - harry.millwater@utsa.edu
 - juan.ocampo@utsa.edu

Web site upcoming

Questions

